

Rinnai Global Capabilities

Rinnai.

- Based in Nagoya, Japan with over 10,000 employees world-wide
- Over 29 Global Subsidiaries and Affiliates in 43 countries
- Established in 1920 Tanklesss introduced to NA in 1999.
- Used in Japan's first "low carbon certified" building
- Certified CSA Testing Laboratory
- North American Headquarters located in Peachtree City, GA
- #1 Tankless Water Heater Manufacturer in U.S. and Canada

U.S. Water Heater Market

Total Gas WH Market

Tankless Gas WH Market

ENHANCING LIVES BY CHANGING THE WAY WATER IS HEATED

Rinnai.

MAYTAG°

20.0 %

6.9%

3.8%

WORLD CLASS

1.0%

<.5%

Current Product Portfolio

Rinnai.

Emergency Replacement

Planned Replacement and New Construction

Transforming the way water is heated

Rinnai.

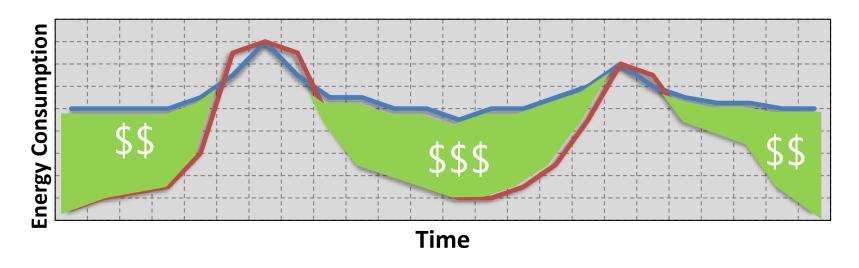
Products that change the way water is heated Rinnai.

Existing Boiler Room

Same Boiler Room with Multiple Solutions

ENHANCING LIVES BY CHANGING THE WAY WATER IS HEATED

Example: 1,000,000 Btu System



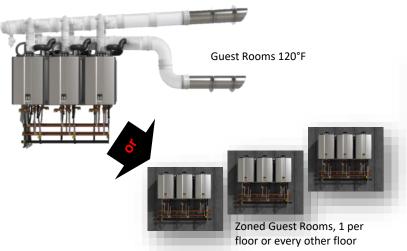
One Rinnai tankless disabled: loss of 16% DHW

Tank disabled: 100% loss of DHW

One unit disabled: 50% loss of DHW

TRS can Track the Load from one fixture to the entire facility under peak demand

Rinnai Commercial Products



Reduce Capital and Operating Costs

<u>Multi-Zoned Installations provide VE opportunities</u>

Eliminate large, complicated and expensive central systems

- Ability to separate DHW from high temp HW without expensive mixing valves
- · Shorter recirculation loops reduces pump size and saves energy
- Space savings with smaller, wall-mount TRW
- Redundancy provides maximum uptime

Kitchen / Laundry 140°F

\$15 to \$25K Mixing Valve

Overall lower cost to install

ENHANCING LIVES BY CHANGING THE WAY WATER IS HEATED

Alignment of Sustainability Goals

2025 SUSTAINABILITY AND SOCIAL IMPACT GOALS: REDUCE ENVIRONMENTAL IMPACTS

GOAL

Reduce environmental footprint by 15% | 30% | 45% across the portfolio by 2025 (from a 2016 baseline; for water | carbon | waste on an intensity basis)

SUPPORTING GOALS

WATER

Reduce water intensity by 15%

Reduce carbon intensity by 30% Commit to analyze the opportunity to set a science-based target by 2018

WASTE

Reduce waste to landfill by 45%

Reduce food waste by 50%

RENEWABLE ENERGY

Achieve a minimum of 30% renewable energy use

- Zoned Water Heating
- Strategically Locate tankless.
- Integrated Recirculation

All can reduce waste by reducing time to purge cold water from lines

- High efficiency technology
- · Superior load tracking
- Integrated recirculation control

All reduce energy usage and reduce carbon emissions

- Tankless technology has a longer expected life vs tanks
- · Parts are field replaceable
- Parts are easily recyclable

Rinnai products reduce the impact to landfills

 Tankless technology is the preferred back-up to solar thermal water heating systems

Renewal systems such as solar thermal all require a back-up and method to handle peak demands

Rinnai Life Cycle Cost Analysis - Hospitality

Rinnai.

(2) Tankless Racks TRS04 and TRS06	١	/ear 1	Υ	ear 2		Year 3	١	Year 4	١	ear 5	١	ear 6	١	ear 7	١	ear 8		Year 9	Υ	ear 10	To	otal LCC
Equipment Cost (Year 7 HX replacement)	\$	28,500	\$	-	\$	-	\$	-	\$	-	\$	-	\$	4,000	\$	-	\$	-	\$	-	\$	32,50
Installation Cost (Year 7 HX replacement)	\$	12,000	\$	-	\$	-	\$	-	\$	-	\$	-	\$	1,000	\$	-	\$	-	\$	-	\$	13,00
Utility Rebate(s)	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	
Total Installed Cost	\$	40,500	\$	-	\$	-	\$	-	\$	-	\$	-	\$	5,000	\$	-	\$	-	\$	-	\$	45,50
Annual Maintenance	\$	-	\$	2,000	\$	-	\$	2,000	\$	-	\$	2,000	\$	-	\$	2,000	\$	-	\$	2,000	\$	10,0
Annual Energy Cost	\$	11,670	\$	11,670	\$	11,670	\$	11,670	\$	11,670	\$	11,670	\$	11,670	\$	11,670	\$	11,670	\$	11,670	\$	116,7
Total Operating	\$	11,670	\$	13,670	\$	11,670	\$	13,670	\$	11,670	\$	13,670	\$	11,670	\$	13,670	\$	11,670	\$	13,670	\$	126,70
Productivity Add Inputs (revPAR and ADR)		100		36,500	\$	2,500,000	\$	68		0.70	\$	97.85		2	20							
	# (OF RMS		AIL S/YR		OSS RM YR	rev	/PAR	ос	CUP. %	ΑD	R		"NO HOT		–					Г	
Productivity Add Offset		\$1,957	11111	\$1,957	AL V	\$1,957		\$1,957		\$1,957		\$1,957		\$1,957	_	\$1,957		\$1,957		\$1,957	Г	\$19,56
Total Cummulative A&M Cost	\$.	50,213	\$	61,926	\$	71,639	\$	83,352	\$	93,065	\$ 1	104,778	\$1	19,491	\$ 1	31,204	\$	140,917	\$ 1	152,631	\$.	152,63
Rebates may be available in some areas for	tani	kless NG	wat	er heater	s																	
(4) NG Tank (100 Gal.)		V1	_	rear 2		Year 3		V4		Year 5		Y- on C		Year 7		/ · · 0		Year 9	_	ear 10		otal LC
Equipment Cost	Ś	Year 1 24,000	Ś	ear 2	ċ	rear 3	Ś	Year 4	Ś	24,000		Year 6	Ś	rear /	Ś	Year 8	Ś	rear 9	Ś	24,000		72,0
Installation Cost	\$	8.000	\$		\$	-	\$	-	\$	8.000	i.		\$	-	\$	-	\$	-	\$	8,000		24.0
Utility Rebate(s)	\$	-,	\$	-	\$	-	\$	-	\$	8,000	\$	-	\$	-	\$	-	\$		۶ \$	8,000	\$	24,0
Total Installed Cost	<u> </u>	32,000	_		\$	_	\$		\$	32,000	<u> </u>		\$	-	\$		\$		\$	32,000	\$	96,00
Annual Maintenance	\$	-	\$	_	\$	_	\$		\$	-	\$	_	\$		\$		\$		\$	-	\$	30,0
Annual Energy Cost	\$	13,670	-	13,670	Ė	13,670	_	13,670		13,670		13,670	-	13,670	Ė	13,670		13,670	-	13,670		136,7
Total Operating	<u> </u>		\$	13,670	_	13,670	\$	13.670	\$	13,670	\$	13.670	\$	13,670	\$	13.670	\$	13,670	\$	13,670		136,7
Total Cummulative A&M Cost	_	45.670	÷	59.340	\$	73.010	_	86.680	_	32.350	_	146.020	_	59,690	_	73.360	_	187.030	÷	232.700	Ė	232.70

Rinnai Commercial CU199 SENSEI

Rinnai.

- Flexible installation options
 - (Interior/Exterior, Natural Gas/Propane)
- 97% Thermal Efficiency
- Common Vent up to 12 units/~2.4MMBTU (6" PVC)
- Warranty
 - 8 years or 12,000 operation hours heat exchanger
 - 5 year parts
 - 2 years labor*

Focused on 3 ideals to Captivate Customers:

- 1. Installation Ease
- 2. Operational Performance
- 3. Serviceability

Every component was designed to be removed in under 10 minutes

Rinnai Control – R Wi-Fi Module

Rinnai.

Real-time Status
Remote diagnostics and alerts
Shorter maintenance time
Control and convenience

Rinnai Tankless Rack Systems - TRS™

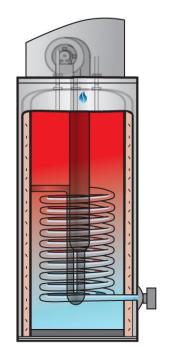
Rinnai.

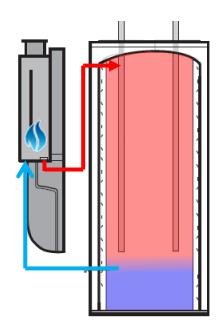
Control-R

Tankless Rack System™
Up to 25 units working together
327:1 Turndown Ration = Superior
Load Tracking

Demand Duo™ Commercial Family of Products Rinnai.

80 gal / 199K BTU Standard Efficiency Demand Duo 80 CHS19980HE (iN/iP)


119 gal / 199K BTU
High Efficiency
Demand Duo 119
CHS199100CU (iN/iP)


119 gal / 398K BTU
High Efficiency
Demand Duo 2
CHS398100CU (iN/iP)

Rinnai.

HE Commercial Water heater

Rinnai Demand Duo Hybrid Commercial Water Heater

Removed the heat source from the tank

Larger tank + 90% utilization = more hot water

Benefits:

- Reduced Thermal Stress on the Tank
- 2. Easily replaced components
- 3. More Hot Water Capacity
- Consistent Hot Water Temperature

The Demand Duo[™] Value Proposition

Rinnai.

Heating occurs in the tankless heat exchanger – not the tank

Set-point temperature water delivered to the tank

Removes stress from tank

Extends the life of the product

RESULT = 2x warranty (8 years HEX / 6 years Tank)

So, would you rather replace this at ~\$7000

Or this at ~\$400?

2x warranty – similar cost - repair vs replace = lower cost of ownership

Demand Duo Warranty

	Demand Duo 119 Demand Duo 2		Deman	nd Duo 80	
		Commercial		Commercial	
		CHS199100CU CHS398100CU		CHS19980HE	
Heat Exchanger		8 years	***	5 years	
Storage Tank		6 y	ears		
Parts and Components					
Reasonable Labor	2 years*				

^{*}Limitations apply, see Rinnai Limited Warranty Terms and conditions located in the installation and operation manual.

How Rinnai National Accounts Started...

Rinnai Sales: "What do you like about this water heater?"

Customer: "Nothing, it's expensive and it has to be replaced every 3 years."

Rinnai Sales: "Great, you should try our Demand Duo."

Customer: "Ok, what's your National Accounts 24/7 phone number?"

Rinnai: "We don't have one..."

Customer: "Sorry Rinnai, I can't live without 24/7 replacement service. I hate the product, but love the service."

Sizing, Energy and Space Savings using a Commercial Tankless Solution

Rinnai Corporation

Role

- Manage a Team Engineers serving North America
- Sizing, design and quotation
- Custom engineered solutions via Made-to-Order (MTO)
 - piping, pump, controls, tank, design drawings and more
- Return-on-investment (ROI) calculations: cost, savings, carbon emissions and life cycle cost analysis
- Commercial system installation and troubleshooting support
- Consultation: Owners, MEPs, Architects, Mechanical Contractors, Facilities
 Managers, Builders, Developers and more

Sizing Fundamentals – Important Factors

- Hot water demand: How much hot water is required during peak?
- Incoming ground water temperature: Ground water temperature could increase system size by up to 40% in northern regions
- Altitude: Air to gas ratio is affected at high altitude
- Existing distribution water line size
- Mechanical space
- Available gas load: Tankless systems require high input rate. Must ensure gas meter, regulator and lines are sized for maximum input rate of system

Sizing Fundamentals – Formulas

Rate of heat transfer:

Btuh = GPH $\times \Delta T \times 8.33$

Btuh = $Q \times \Delta T \times 500$

GPH: Gallons per hr

Q: Water flow rate (gpm) ΔT: Temperature rise (°F)

Btuh: Defined as the quantity of energy necessary to raise the temperature of 1lb of water 1° F in 1 hour

Used to determine energy loads

Mixed water temperature:

P = (Tm-Tc)/(Th-Tc)

P: Hot water multiplier

Tm: Temperature of mixed water (° F)
Tc: Temperature of cold water (° F)
Th: Temperature of hot water (° F)

Hot Water Flow Rate (gpm) =

Mixed Temperature Flow Rate X P

Max Flow Rate of Round Pipe (Q)

 $Q = 2.448d^2V$

Q = flow rate (gpm)

D = pipe diameter (inches)

V = pipe velocity (ft/s)

Friction Head Loss (h):

 $h = 0.000623q^2 \times L/d^5$

H= friction head (ft)

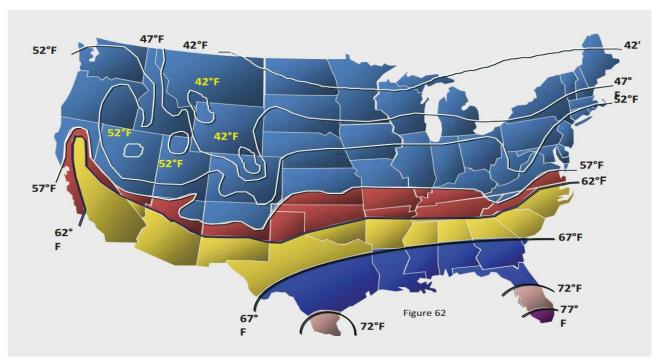
q = flow rate (gpm)

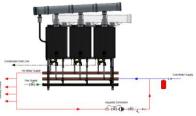
L = pipe length (ft)

d = pipe diameter (inch)

2.31 ft head = 1 PSI

Sizing Fundamentals – Ground Water Temperature Map




Fig. 40 Approx. ground water temperatures Courtesy of epa.gov., accessed September 2012

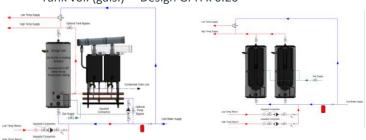
Industry Sizing Methods – ASHRAE & ASPE

ASHRAE

Hot Water Fixture Units and the Modified Hunter's Curve:

- FU: An arbitrary unit assigned to different types of plumbing fixtures
- Most plumbing fixtures are assigned a FU
- Used when sizing tankless, instantaneous, on-demand water heaters (systems that do not incorporate storage)
- Used in conjunction with the Modified Hunter's Curve to estimate water flow rates
- The Modified Hunter's Curves are specific to the application
- Diversity is included in the curves

ASPE

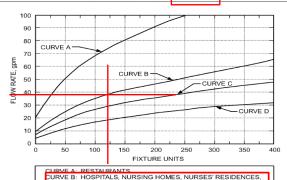

GALLONS PER HOUR (GPH) REQUIREMENT: an estimated measure of the total gallons of hot water the building will use during peak periods. Fixture GPH is specified by technical publications such as American Society of Plumbing Engineers (ASPE) or the fixture manufacturer. This method is used for sizing storage water heating systems.

Determining design load (Btuh):

Design load (Btuh)= GPH X ΔT X 8.33 ΔT: temperature rise (F) 8.33: weight of water (8.33lb/gal)

Engines = <u>Design load (Btuh)</u>
Engine max. input (Btuh) x Engine TE.

Tank vol. (gals.) = Design GPH x 0.20

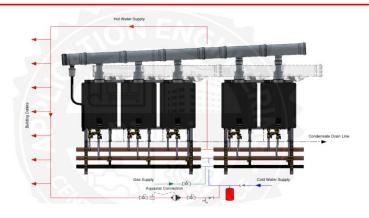

Sizing Example – Central Plant w/ Tankless Only

ASHRAE | 55 Suite Hotel | Location: Suburban Atlanta, GA | GWT: 65F| Supply temp: 120F| ΔT: 55F

50.28 2015 ASHRAE Handbook-HVAC Applications

		(140°F Water)	

	Apartments	Club	Gymnasium	Hospita	Hotels and Dormitories	In <mark>dustrial</mark> Plant	Office Building	School	YMCA
Basin, private lavatory	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Basin, public lavatory	-	1	1	1	1	1	1	1	1
Bathtub	1.5	1.5		1.5	1.5	_		2 21	-
Dishwasher*	1.5	Five fixture	units per 250 se	ating capa	city				
Therapeutic bath		_		5	-		0-0	_	
Kitchen sink	0.75	1.5		3	1.5	3		0.75	3
Pantry sink	-	2.5	1	2.5	2.5		-	2.5	2.5
Service sink	1.5	2.5	S	2.5	2.5	2.5	2.5	2.5	2.5
Shower	1.5	1.5	1.5	1.5	1.5	3.5	25_2	1.5	1.5
Circular wash fountain	1.	2.5	2.5	2.5	-	4	10-0	2.5	2.5
Semicircular wash fountain		1.5	1.5	1.5	_	3	3_3	1.5	1.5



CURVE D: OFFICE BUILDINGS, ELEMENTARY AND HIGH SCHOOLS

HOT WATER FIXTURE LIST					
Fixtures	Qty.	FU	Total FU	GPH	Total GPH
Suites/rooms	55			12	660
Tub/showers	55	1.5	82.5		
Lavatory/hand sinks	55	0.75	41.25		
	Total WSFU		124	Total GPH	660
Design Flow Rate (gpm)	36.8		Desig	ın GPH	660

Flow rate/engine (CU199) @ 55F rise: 7 gpm

Engines :37/7 = 5 engines or 1-TRW03 + 1-TRW02

CURVE C: APARTMENTS AND HOUSES

35

Sizing Example – Central Plant w/Storage

ASPE

Determine design load (Btuh):

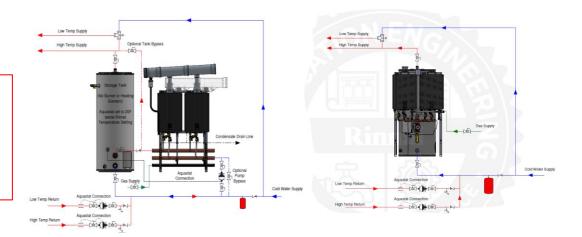
Design load (Btuh)= GPH X ΔT X 8.33

 ΔT : temperature rise (F)

8.33: weight of water (8.33lb/gal)

Engine qty. = Design load (Btuh)

Engine max. input (Btuh) x Engine TE.


Tank vol. (gals.) = Design GPH \times 0.2

Design load: 660 x 55 x 8.33 = 302,379 Btuh

Engine qty. = 302,379 = 1.6 ~ 2 engines 199,000 x .97

Tank vol. = $660 \times 0.2 = 130 \sim 119 \text{ gal}$

HOT WATER FIXTURE LIST					
Fixtures	Qty.	FU	Total FU	GPH	Total GPH
Suites/rooms	55			12	660
Tub/showers	55	1.5	82.5		
Lavatory/hand sinks	55	0.75	41.25		
	Total WSFU		124	Total GPH	660
Design Flow Rate (gpm)	36.8		Desiç	ın GPH	660

Energy Savings

Items needed:

- Job must be sized by Rinnai
- Make and model of spec'd or existing system
- Storage capacity
- Thermal efficiency
- Tank standby loss
- Age of tanks
- Utility rates

APPLICATION INFORMATION					
Application Type:	Hotel				
Unit of Measure:	US				
Rinnai Fuel Type:	Natural Gas				
Tank Fuel Type:	Natural Gas				
Location:	Indoor				

DESIGN PARAMETERS							
Supply temp:	120	۴					
Ground temp:	65	٩F					
Temperature rise:	55	٩F					
Age of existing ¥H	8	yrs					

	Rinnai TRS	2 Tank Water Heater
Design peak demand (GPH)	660	660
*Temperature rise (°F)	55	55
Design Btuh	302,379	302,379
Estimated peak demand duration (hr/day)	4	4
Est. days per year of operation	365	365
Est. water consumption/yr (gal.)	963,600	963,600
Average energy cost/ Therm	\$0.798	\$0.798

WATER HEATER DATA		
Model	Rinnai TRS	2 Tank Water Heater
Thermal efficiency (New)	97%	82%
Quantity	5	2
Max input rate/unit (Btuh)	199,000	199,000
Total system Btuh	995,000	398,000
Storage capacity/unit (gal.)		100
Total storage capacity (gal.)		200
*Standby loss (Btuh)		1,000
Total standby loss Btuh)		2,000
*Annual standby loss (Btuh)		17,520,000
Annual energy consumption (Btuh)	455,127,155	614,105,595
Energy used per year (Therm)	4,551	6,141

		Cost	Rinnai 9	Savings
Cost/Savings Rinnai Tank	Rinnai TRS	2 Tank Water Heater	Year 1	Year 10
*Estimated annual operating cost	\$3,631.91	\$4,900.56	\$1,268.65	\$12,686.48
		Total Rinnai savings	\$1,268.65	\$12,686.48
Percent savings over tank		26%		

ANNUAL CARBON EMISSIONS ESTIMATES						
	Rinnai TRS	2 Tank Water Heater				
CO ₂ production (lbs)	54,948	74,142				
Rinnai saves (Ibs CO2)		19,194				
**Trees saved		331				

Space Savings

Rinnai 5 - Tankless

FLOOR SPACE = 0 SQFT

2-199/100 Water Heater

H: 75.75 in = 6.61 ft Dia: 33.12'' = 2.76 ft

FLOOR SPACE: 16+ SQFT (includes space for clearances)

Value add to business owners:

- 1. Tighter mechanical room
- 2. Reduce material cost for new construction or major renovation
- 3. Saved space can be used to generate revenue for businesses
- 4. Low operational and maintenance cost
- 5. Longer life

System Comparison

Weigh advantages of each system to select option that is right for you

Tankless Rack Systems

Storage Water Heating Systems

No Standby Loss	Tank standby loss
No floor space (except Free Standing TRS)	Floor space required
Larger gas lines	Smaller gas line
Precise temperature control	Water temperature controlled by tank aquastat
Fully modulating system with Electronic Manifold Control (325:1 turn down ratio)	Modulation at higher Btuh input (25:1 turn down ratio)
Lower operating cost	Higher operating cost

Engineering Support

8:00AM - 8:00PM EST

*100% Sizing Guarantee

24/7/365 Technical Support | 866.383.0707 engineering@rinnai.us

* No change to original fixture list and design parameters

Questions?

Thank you

Group Discussion / Questions

Case Studies

Rinnai.

Pinellas County Schools learns how Rinnai Demand Duo Hybrid Water Heaters can ensure a reliable supply of hot water, reduce operating costs, and provide long-lasting dependability.

Like any other public school system, Pinellas County Schools in Florida operates on a tight budget and answers to a lot of vested parties, including a school board, parents and taxpayers. So, it's no surprise that they're always looking for ways to function more efficiently and effectively, to better serve students, save money and reduce time spent on equipment

When water heating units started failing in the county's Countryside High School, the county began searching for a dependable, efficient and serviceable solution for the school and its students and staff. What the county needed was a hot water source that didn't have the same fallibility and short service life as the units they currently used. Moreover, they needed a system that offered redundancy, to avoid a complete loss of hot water during the school day. What they found was Rinnai's Demand Duo Hybrid Water Heating System.

SMARTER HOT WATER, QUICK AND EASY.

For years, the Pinellas County School System, located in the Tampa Bay area of Florida, relied on traditional tank-style water heaters. However, over time, those responsible for maintaining and servicing these units realized their lifespan was shorter than they'd expected - typically only six to eight years, at the

With the heat exchanger located on the inside of the unit, acidic condensate was consuming the tanks from the inside out, eventually causing the tanks to rupture. "With such a short life span, I knew there had to be a better alternative," said Ty Crawford, in charge of maintenance for the school system. "We've been running Rinnai tankless products in other schools for about 10 years now, so we trust Rinnai.

"I'd heard about the Demand Duo," Crawford continued, "and I thought it sounded like it might be the ideal solution for us. So I started looking into it." It wasn't long afterwards that TEMPACO, an Orlandobased distributor of natural gas and propane products, installed three Rinnai Demand Duo hybrid units at Countryside High School. These directreplacement solutions were a fast, straightforward upgrade from the school's tank-style units. And the successful installation has since led to more installations at other schools throughout the Pinellas County School System.

innai SE+ or Hot-Water enue.

fficient dairy ducts for stores isistently set the Ill and his son John is more efficient, profit.

s visited the farm. ar heater, the ld help the farm kless water heating knew that would

JC98 tankless water nnai tankless models re than \$20,000.

ATURE

rm is heating water itability. Since stringent health used for fluid sese, and other products, water must Il bacteria and milk fat stem only delivered resulting milk fat

Rinnai

Istent, reliable hot haps most essential While tankless

h of time, or it may previous water heating as with inconsistent xpensive to repair, the change.

Installer Daniel Hutson and during the viewed several different offer redundancy to er to power the facility's al kitchen. Additional efficiency, precise xpansion

ation increase. :O-Any establishment

Rinnai

d university residence cial projects, like vater for cooking.

ANCY

trose County Jall

of gallons of beer several times a week er delivered at precise temperatures: nce everything from the beer's flevor to its t water source that outputs at exactly the

wing Company

BREWERY TO INSTALL EATER IN THEIR EVAN, BIG OR SMALL YOUR NEEDS." empany, Newman, Ga

one in Newman. Go is the breinshild of browing. When selecting equipment for the water heating options, knowing that the of hot water at extreme temperatures to

requirement for achieving the perfect brow · Wall-mounted, compact design allows for more brewing space

BREWERIES

- requires no want components and saves
- . Longer No spen than traditional tank-style
- . For larger browerles, units can be banked together as a single hot-water source to ansure peak-demend needs are always met, built-in redundancy of multiple units onsures the browery can maintain its
- · Minimal risk of property damage due to keidro water, unlike a traditional tank.

ilers and

lows

v to

viggus

lifying

vents

nd other event

ot water in

especially

. However,

and no hot

that is

also have long

na technology

asted heating

ents because

CONSISTENT HOT WATER,

ETRACK RENOVATION

Located on 837 acres. Atlanta Motor Speedway hosts more than 150,000 attendees during NASCAR race weekend each spring. With approximately 20,000 people staying on the Speedway campgrounds, it is not surprising that the facility's 84 showers require a significant amount of hot water. In addition to Atlanta Motor Speedway's four shower stations, the track features a banquet kitchen to serve the grandstand suites along with 20 concession stands - all of which require consistent hot water.

Rinnai

Although race attendees have been thankful for the AMS shower stations since their construction in 1995 and 2001; over the years racing fans learned that the AMS showers occasionally could run out of hot water during times of heavy use. Consequently, when Rinnal Joined as a sponsor of the Rinnal 250 at AMS in 2017, it seemed like the natural time to replace the facility's existing boiler and traditional tank water heating units with a state-of-the-art Rinnal tankless system.

Rinnal's Application Engineering Center of Excellence evaluated AMS's water heating needs and designed a system that would be more efficient and reliable than its existing system. Soon two local Rinnal dealers, Houston Armour, Inc. and Action Plumbing Company, began the Installation of 30 OWERS tankless units on the AMS campus

Hospitality

Rinnai.

110-Room Courtyard

Application:	110-Room Full Service Hotel w/ kitchen, bar and laundry
Replaced:	Original spec was 4 AO Smith BTH 100/199
Install Date:	Winter 2015
Location:	Mid West / Canfield, OH
Equipment:	2 - TRW04iN + TRS06iN =
	(14 RUC98iN
Venting:	3 - Common Vent kits, Horizontal
	Terminations, Multiple
Accessories:	Extensions
Output:	2- REU-MSB-M, multiple MSB-C1
	2.8M BTU, (2.0 for rooms and 800K for
Comments:	kitchen / laundry)
	TRS designed with split systems – 1
	supplying the rooms; (10 units) and one
	supplying the kitchen, (4 units, not
	shown), bar and laundry.

Hospitality

Rinnai.

183-Room Full Service Hotel

Application:	183-Room Full Service Hotel w/ kitchen, bar and laundry
Replaced:	7 AO Smith BTH 400A – 100 gallon
Install Date:	Spring 2014
Location:	Mid West / Perrysburg, OH
Equipment:	4 - TRW04iN + TRS04iN =
• •	(20 RUC98iN)
Venting:	3 - Common Vent kits, Horizontal
	Terminations, Multiple
Accessories:	Extensions
Output:	2 - MCC-91, 5 - REU-MSB-M, multiple
Comments:	3.2M BTU, 2500 GPH @ 140 F
	TRS designed with split systems – 1
	supplying the rooms (16 units) and one
	supplying the kitchen (4 units, not
	shown), bar and laundry

Hospitality Rinnai.

112-Room Hotel

Application:	112-Room Hotel w/ small kitchen
Replaced:	New Construction
Install Date:	Summer 2013
Location:	Mid Atlantic / Virginia
Equipment:	2 – TRS06iN
Venting:	2 - Common vent kits, horizontal
	terminations, multiple extensions,
	elbows and 45s
Accessories:	2 - MCC-91, 3 - REU-MSB-M,
	multiple MSB-C1
Output:	3.2M BTU, 2500 GPH @ 140 F
Comments:	TRS designed with split systems – 1
	supplying the rooms (16 units) and one
	supplying the kitchen (4 units, not
	shown), bar and laundry

Hospitality Rinnai.

Full Service Hotel

Application:	Full Service Hotel
Replaced:	6- 100Gal / 199K BTU high efficiency
	tanks
Install Date:	March 2016
Equipment:	6 – Demand Duo™ CHS199100iN
Venting:	8" PP Common Vent, Exhaust Only
Accessories:	None
Comments:	Provides hot water for hotel of 120
	rooms

Rinnai.

86-Room Full Service Hotel

Application:	Primary hot water for guest rooms, laundry and kitchen
Replaced:	New construction
Install Date:	September 2015
Location:	Oklahoma
Equipment:	2 TRS06 (12 units total) feeding a 300 gallon storage tank
Venting:	2 Common Vent kits, extension pieces, side wall termination
Accessories:	6-MCC91-2 commercial temperature controllers
Output:	1.2M BTU/ ~1400 GPH
Energy Info:	TBD
Comments:	This 4 star hotel is located just outside downtown OKC and Will Roger's International Airport. This project was specified for commercial tanks but went with Rinnai Tankless Rack System and storage

Hospitality

Rinnai.

80-Room Full Service Hotel

Application:	80-Room Hotel w/ kitchen, bar and laundry 1.0M BTU with 500 gallons storage during
Replaced:	renovation Fall 2013
Install Date:	Tampa, FL
Location:	2 – TRW04eN wall rack system
Equipment:	External – no venting required
Venting:	1 - MCC-91, 1 - REU-MSB-M, multiple
Accessories:	MSB-C1 1.6M BTU delivering approximately 3300
Output:	GPH
Energy Info:	Roof units free up space utilized by large
Comments:	storage. TRS will effectively track the hot water demand of this hotel and deliver hot water only when needed. The energy savings is realized by using high efficiency 95% condensing tankless and 105:1 TDR which allows modulation from 15.2K BTU up to 1.6M BTU.

